Selectivity as a Function of Membrane Thickness: Gas Separation and Pervaporation

نویسندگان

  • H. KOOPS
  • A. M. NOLTEN
  • M. H. V. MULDER
  • C. A. SMOLDERS
چکیده

In this article, the pervaporation selectivity as a function of the membrane thickness is studied for the dehydration of acetic acid. From this study, it appeared that the selectivity of polysulfone (PSF) , poly (vinyl chloride) (PVC ) , and polyacrylonitrile (PAN) decreases with decreasing membrane thickness, below a limiting value of about 15 pm. However, in the case of gas separation, the selectivity of PSF membranes is independent of the membrane thickness. This phenomenon could not be explained by a difference in membrane morphology, sorption resistance, thermodynamic interaction, or coupling. It is believed that the decrease in selectivity for thin membranes has to be attributed to defects induced during pervaporation. These defects, crazes (and cracks), result from a reduced value of the critical strain, due to sorption of acetic acid/water and stresses between the polymer chains, due to a concentration gradient across the membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation Performance of Improved PERVAPTM Membrane and Its Dependence on Operating Conditions

By using binary ethanol/water mixtures, the separation performance of two improved commercial pervaporation embranes (PERVAPTM) are presented. Separation performance data are analyzed and compared as a function of operating conditions. The effect of initial feed concentration on the separation performance and the effect of feed concentration on apparent activation energy are presented. For memb...

متن کامل

Acetic acid Separation as a Function of Temperature Using Commercial Pervaporation Membrane

Acetic acid was separated from a dilute mixture using a commercial polyvinyl alcohol (PVA) membrane.  Intrinsic separation characteristics of the membrane were studied as a function of temperature.  The degree of membrane swelling decreased marginally with increase in feed temperature. At 25oC the maximum degree of swelling was found out to be 46.3%, which reduced to 39.5%...

متن کامل

Permeability and selectivity prediction of poly (4-methyl 1-pentane) membrane modified by nanoparticles in gas separation through artificial intelligent systems

In this work, the effects of operative parameters on CH4, CO2, O2, and N2 membrane gas separation for poly (4-methyl-1-pentane) (PMP) membrane modified by adding nanoparticles of TiO2, ZnO, and Al2O3 are assessed and investigated. The operative parameters were type and percentage of nanoparticles, and cross membrane pr...

متن کامل

EFFECT OF OPERATING CONDITIONS ON THE DEHYDRATION OF TOLUENE BY PERVAPORATION USING A POLYVINYL ALCOHOL MEMBRANE

The effects of operating parameters such as feed temperature and permeate-side pressure on the performance of a commercial PVA membrane in the dehydration of toluene by a pervaporation (PV) membrane system is studied in the present work. The results obtained indicate that increasing temperature in the range of 40 to 70 °C and reducing permeate pressure in the range of 1 to 10 mmHg increase memb...

متن کامل

Fabrication and Characterization of Chitosan/Alginate Multilayer Composite Membrane Supported by a Porous Poly (Acrylonitrile) Substrate for Pervaporation Dehydration of Alcohol

Chitosan (CS) and alginate (Alg) are complementary in their membrane performance, but the combination of them is normally difcult to use due to their different solubilities. Layer-by-Layer deposition appears to be an effective method for improving the separation efciency of a composite membrane. In this work, the polyelectrolyte multilayer composite membranes (PEMCMs) wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002